Dạng 6: Tìm thời điểm vật qua vị trí x0 lần thứ n

Học Lớp

Administrator
Thành viên BQT
Ta biết dao động điều hòa có mối liên hệ mật thiết với chuyển động tròn đều. Một công thức tương quan về mối liên hệ đó là \(\Rightarrow \Delta t = \frac{\alpha }{2\pi}.T\)
Đường tròn diễn tả điều đó:
phương pháp đường tròn.png

\(\\ \cdot \ x = 0 \Rightarrow x = \frac{A}{2} \Rightarrow \alpha = \frac{\pi}{6} \Rightarrow \Delta t = \frac{T}{12}\\ \cdot \ x = 0 \Rightarrow x = \frac{A}{\sqrt{2}} \Rightarrow \alpha = \frac{\pi}{4} \Rightarrow \Delta t = \frac{T}{8}\\ \cdot \ x = 0 \Rightarrow x = \frac{A\sqrt{3}}{2} \Rightarrow \alpha = \frac{\pi}{3} \Rightarrow \Delta t = \frac{T}{6}\\ \cdot \ x = 0 \Rightarrow x = A \Rightarrow \alpha = \frac{\pi}{2} \Rightarrow \Delta t = \frac{T}{4}\)

Công thức tổng quát: \(\Delta t = \frac{\alpha }{2 \pi }.T\)
Điều đó được mô tả bằng sơ đồ thời gian
phương pháp đường tròn 1.png

Bài toán: Tìm thời điểm vật qua vị trí x0 lần thứ n
Cho dao động: \(x = Acos(\omega t + \varphi )\)
Hướng dẫn
Cách 1: Khi \(x = x_0 \Rightarrow cos(\omega t + \varphi ) = \frac{x_0}{A} \ \ (*)\) ⇒ Tìm kết quả
Cách 2: Sử dụng sơ đồ thời gian
  • Xác định trạng thái ban đầu (t = 0)
  • Vẽ sơ đồ, xác định x0
  • Vẽ đường đi ⇒ kết quả
Chú ý: (1) Khi không xét chiều chuyển động tại x0 \((x_0 \neq \pm A)\).
  • Suy ra \(t_n = t_1 + \frac{n-1}{2}.T\): n là số lẻ
  • hoặc \(t_n = t_2 + \frac{n-1}{2}.T\): n là số chẵn
  • (2) Khi có xét chiều chuyển động tại x0 ⇒ tn = t1 + (n – 1)T
Ví dụ 1: Cho dao động \(x= 2\sqrt{2}.cos(10\pi t - \frac{\pi}{3})\) (cm).
a. Tìm thời điểm vật qua vị trí cân bằng lần 2015?
b. Tìm thời điểm vật qua vị trí x = -2cm lầm 2016?
Giải
Cách 1:
a. Vật qua VTCB \(x = 0 \Rightarrow cos(10\pi t - \frac{\pi}{3}) = 0\)
\(\\ \Rightarrow 10\pi t - \frac{\pi}{3} = \frac{\pi}{2} + k \pi\\ \Leftrightarrow 10 \pi t = \frac{5 \pi }{6} + k \pi \Rightarrow t = \frac{1}{12} + \frac{k}{10} \ (Voi \ k \in Z; t > 0)\)
\(\\ \cdot \ k = 0 \Rightarrow t_1 = \frac{1}{12} + \frac{0}{10}\\ \cdot \ k = 1 \Rightarrow t_2 = \frac{1}{12} + \frac{1}{10}\\ \cdot \ k = 2 \Rightarrow t_3 = \frac{1}{12} + \frac{2}{10}\\ \vdots\\ \Rightarrow k = 2014 \Rightarrow t_{2015} = \frac{1}{12} + \frac{2014}{10} = \frac{12089}{60}s\)

b.
\(\left\{\begin{matrix} x = -2 \Rightarrow cos(10\pi t - \frac{\pi}{3}) = -\frac{1}{\sqrt{2}}\\ t_{2016} = \ ? \hspace{4,2cm} \end{matrix}\right.\)
\(\Rightarrow cos(10\pi t - \frac{ \pi }{3}) = cos \frac{3 \pi }{4}\)
\(\Rightarrow \Bigg \lbrack \begin{matrix} 10\pi t - \frac{\pi}{3} = - \frac{3 \pi}{4} + k2 \pi\\ 10\pi t - \frac{\pi}{3} = \frac{3 \pi}{4} + k2 \pi \ \ \end{matrix}\)
\(\Rightarrow \Bigg \lbrack \begin{matrix} 10\pi t = - \frac{5 \pi}{12} + k2 \pi\\ 10\pi t = \frac{13 \pi}{12} + k2 \pi \ \ \end{matrix}\)
\(\Rightarrow \Bigg \lbrack \begin{matrix} t = - \frac{1}{24} + \frac{k}{5}\\ t = \frac{13}{120} + \frac{k}{5}\ \end{matrix} \ \ \ (k \in Z; t > 0)\)
\(\\ \cdot \ k = 0: \Bigg \lbrack \begin{matrix} t_0 = - \frac{1}{24} + \frac{0}{5}\\ t_1 = \frac{13}{120} + \frac{0}{5}\ \end{matrix}\\ \cdot \ k = 1: \Bigg \lbrack \begin{matrix} t_2 = - \frac{1}{24} + \frac{1}{5}\\ t_3 = \frac{13}{120} + \frac{10}{5}\ \end{matrix}\\ \cdot \ k = 2: \Bigg \lbrack \begin{matrix} t_4 = - \frac{1}{24} + \frac{2}{5}\\ t_5 = \frac{13}{120} + \frac{2}{5}\ \end{matrix}\)
\(\Rightarrow t_{2n} = -\frac{1}{24} + \frac{n}{5}\)
Với 2016 = 2n ⇒ n = 1008
\(\Rightarrow t_{2016} = -\frac{1}{24} + \frac{1008}{5} = \frac{24187}{120}(s)\)

Cách 2:
a.
\(\left\{\begin{matrix} x=0\\ t_{2015} = \ ? \end{matrix}\right.\)
\(t = 0: \left\{\begin{matrix} x = \sqrt{2}\\ v > 0 \ \ \end{matrix}\right.\)
phương pháp đường tròn 2.png

\(\\ t_1 = \frac{T}{6} + \frac{T}{4} = \frac{5T}{12}\\ \Rightarrow t_{2015} = t_1 + \frac{2014}{2}.T\\ \Rightarrow t_{2015} = \left ( \frac{5}{12} + \frac{2014}{2} \right ).T\\ \Rightarrow t_{2015} = \frac{12089}{60}s\)

b.
phương pháp đường tròn 3.png

\(\\ t_2 = \frac{T}{6} + \frac{T}{2} + \frac{T}{8}= \frac{19T}{24}\\ \Rightarrow t_{2016} = t_2 + \frac{2016 - 2}{2}.T = \left ( \frac{19}{24} + 1007 \right ). \frac{1}{5} = \frac{24187}{120} (s)\)

VD2: Cho dao động \(x = 3.cos(4 \pi t + \frac{ \pi }{6})\) (cm). Tìm thời điểm vật qua vị trí \(x = -1,5\sqrt{3}\) cm và đang ra xa VTCB lần thứ 2016?
Giải
\(\left\{\begin{matrix} x = -1,5\sqrt{3}\\ v < 0 \hspace{1,3cm}\\ t_{2016} = \ ? \hspace{0,6cm} \end{matrix}\right.\)

Cách 1:
\(\\ \Rightarrow \left\{\begin{matrix} cos(4 \pi t + \frac{\pi}{6}) = -\frac{\sqrt{3}}{2}\\ sin (4 \pi t + \frac{\pi}{6}) > 0 \ \ \ \ \end{matrix}\right. \\ \Rightarrow 4 \pi t + \frac{\pi}{6} = \frac{5 \pi }{6} + k2 \pi\\ \Rightarrow 4 \pi t = \frac{2 \pi}{3} + k2 \pi\\ \Rightarrow t = \frac{1}{6} + \frac{k}{2},\ (k \in Z; t > 0)\\ \Rightarrow t_{2016} = \frac{1}{6} + \frac{2015}{2} = \frac{6046}{6} = \frac{3023}{3}\)

Cách 2:
\(\left\{\begin{matrix} x = -1,5\sqrt{3}\\ v < 0 \hspace{1,3cm} \end{matrix}\right. ; t = 0: \left\{\begin{matrix} x = 1,5\sqrt{3}\\ v < 0 \hspace{1cm} \end{matrix}\right.\)
phương pháp đường tròn 4.png

\(\Rightarrow t_{2016} = t_1 + (2016 - 1).T\)
Với \(\left\{\begin{matrix} t_1 = \frac{T}{6} + \frac{T}{6} = \frac{T}{3} \\ T = \frac{2 \pi}{3} = \frac{1}{2}s \ \ \ \ \end{matrix}\right.\)
\(\\ \Rightarrow t_{2016} = \left ( \frac{1}{3} + 2015 \right ).\frac{1}{2}\\ \Rightarrow t_{2016} = \frac{3023}{3}(s)\)
 
Sửa lần cuối:

Chương 1: Dao động cơ

Bài 1: Dao động điều hòa Bài 2: Con lắc lò xo Bài 3: Con lắc đơn Bài 4: Dao động duy trì - dao động cưỡng bức - dao động tắt dần Bài 5: Tổng hợp dao động

Bài 6: Sơ đồ tư duy chương dao động cơ

Tài liệu: dao động cơ